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Abstract. The S ~ N C ~ U T ~  and Vema module of the quantum matrix element algebra A("), 
of the quantum group GL(n), are studied. The method used here is similar to that for 
studying the ~ tmcture  and Vema module of semisimple Lie algebras. The concept of the 
Canan subalgebra, raising and lowering operators and their pain is defined. The q-boson 
and the corresponding Heisenberg-Weyl relation realizations are generally studied and 
the cyclic representations of A("), are obtained. The explicit examples A(2), and A(3), 
are discussed in detail. 

Quantum groups and quantum algebras are deeply rooted in many integrable nonlinear 
physical models through the quantum Yang-Baxter equation [l]. The quantum (uni- 
versal enveloping) algebras [2] and their representation theory have been extensively 
studied both in the generic case [3] and in the non-generic case [4]. 

Quantum groups [SI can be specified using the quantum R-matrix that satisfy the 
quantum Yang-Baxter equation [6]. Floratos studied the representations of A@), of 
GL(2), in terms of the Heisenberg-Weyl relation (HWR) [7]. Weyers proved that A(n), 
can be recast as the HWR provided some invertibility conditions are met [8] and 
Chakrabarti and Jagannathan developed a procedure constructing these realizations 
of A(n), [9]. For the case A(2), with spectrum parameters, its representations have 
been well studied in the quantum inverse scattering method [6]. A classification of 
finite-dimensional irreducible representations of A(2), can be found in [ 101. 

In this letter we develop a new procedure for studying the structure and Verma 
module of A(n), of GL(n),. The method used here is similar to that for studying the 
structure and Verma module of semisimple Lie algebras. The concept of the Cartan 
subalgebra, raising and lowering matrix elements and their pairs is defined. The q-boson 
and HWR (Z. operator) realizations are generally studied using the procedure formu- 
lated in [ll]. Explicit examples A(2), and A(3), are discussed in detail. 

In this letter Z+ denotes the set of all non-negative integers, C denotes the complex 
number field and C* = C\{O). 

The quantum group GL(n), is a set of n x n matrices M = (m,) ,  1 S i, j 6  n, whose 
matrix elements are non-commuting and satisfy the following bilinear product relations: 

mumfk = q-'mjkm, j < k  ( la)  
m p k j  = q-'mkjm, i < k  ( I b )  
mVmkj = mkjmV i <  k and j >  I (IC) 

mgmkl= mklm, + ( 4 - l -  qImilmkj  ( I d )  
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i < k and j < I. 
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We also require that the quantum determinant D , ( M )  of matrix M defined by 

D , ( W  = 1 ( - q ) - i ( s h ~ , m 2 s 2 . .  . mnsn (2) 
I E S .  

is not vanishing (where S, is the symmetric group and l ( s )  is the minimal number of 
permutations in s). The quantum determinant D J M )  has the property that it commutes 
with all the matrix elements m, 

and thus D , ( M )  is a central element [6]. If q is the primitive pth root of unity, we 
also have: 

Proposition 1. If qp = 1, then m$ commutes with all the elements m,, of M. 

- .  inis proposiiion can be easiiy proved using equaiions jiu-c) and the foiiowing 

(4) 

relations 

m,m;,= m;,m,-q(l -q-2')m;;,;'miimkj 

2nd !be defining re!a!ions (!). we G!!! .A(.), !he quantum matrix .!emen! .!gebra. 

for i <  k and j <  I, f EZ+. 

In this letter we would like to study the representations of the matrix elements my 
of M. For this end we define an associative algebra A(n), over C with generators m, 

We start from the following proposition: 

Proposition 2. The set of all antidiagonal matrix elements {mim+l-cl 1 s i < n }  is a 
maximal set of mutually commuting matrix elements. 

This proposition is obvious from the relations (IC). Following the terminology of 
semisimple Lie algebras, we define the subalgebra H(n), of A(n), generated by 
{min+,+,l 1 s i  s n } ,  the Cartan subalgebra. 

From proposition 2 it follows that there exists a common eigenvector U, of Cartan 
subalgebra H(n), on the algebraic closed field C such that 

- 
'1.0 define the Verma moduie, we need to have a maximai vector kiiied By the 

so-called raising generators. What are the raising generators? In fact, the raising 
generators can be naturally defined using the requirement that the quantum determin- 
tant D J M )  be a non-zero constant in the Verma module we shall define. Noting that 
D J M )  commutes with all the matrix element, the requirement that D , ( M )  be a 
non-zero constant becomes 

D , ( M ) U , , = ~ ~ ,  (6) 

mavO = 0 (7) 

where r c  C. If we require that 

for j >  n + 1 - i 
then condition (6) is satisfied and r=-q-["'2'A,A2..  . A., where [ n / 2 ]  is the integer 
part of n!2. TO ensure r ZO; we suppose that hi # 0 ( i  = 1; 2;. . . ~ n) in the following. 
On the basis of the above discussion, we can define that the matrix elements m,, 
j >  n + 1 - i, are the raising matrix elements and m,, j < n + 1 - i, the lowering ones. In 
the sense of equations ( 5 )  and (7) we call U,, the maximal vectors. 
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Recall that in the theory of semisimple Lie algebras, for every positive root a there 
are a raising generator x, and a lowering generator y ,  such that [x,, y , ]  = h. E H (H 
is the Cartan subalgebra of the semisimple Lie algebra). Is there a corresponding 
concept in A(n),? Now let us develop such a concept. 

Definition 1. A set {m,, mk,} of two matrix elements is said to be a pair if i + 1 = j + k = 
n + 1 .  

Then we have 

Proposition 3. ( a )  For any lowering matrix element mb there is a unique raising matrix 
element mkl such that {mb, mr,} is a pair. ( b )  If {m,, mkl} ( i < k )  is a pair, then 
[m, ,  m w ] = ( q - l - q ) m i l m k j = ( q - ' - q ) m i . + , ~ i m * . + , _ * ~ H ( n ) , .  ( c )  For A ( n ) ,  there are 
n ( n  - 1)/2 pairs. 

The proof of this proposition is easy and we omit it here. 
After the above preparation we turn to the Verma module of A(n),. The Verma 

module V(Ai) is defined as 

V(AJ =A(n),uo. (8) 
Then the following proposition is obvious: 

Proposition 4. The Verma module V(A,) of A ( n ) ,  is spanned by 

{x (  k,) = n:jmgu,l  j < n + 1 - i, k, E z+} (9) 
where the symbol ' means that the product is the ordered product. 

It is worth noting that the Cartan matrix elements are not always diagonal on the 
vectors X ( k , )  (see case A(3), below). Now we do not have a general principle to 
choose a linearly independent basis for V(Aj), on which all the Cartan matrix elements 
are diagonal. However, such a base for A(2), and A(3), is worked out in this letter 
(see below). 

If qp  = 1, there exists a submodule I&) of V(AJ generated by {m$ - fiLa I j < n + 1 - i, 
pb E C}. Then we can define a quotient module W(Aj, pV)  = V ( & ) / I ( $ + ) ,  which is a 
finite-dimensional module and is spanned by 

{ X ( k , )  = X ( k , )  Mod I ( f i , ) l  j < n + 1 - i, 0 6  k s p -  I}. (10) 
The representation induced on W(Aj, f i b )  has the cyclic property m$ = f ig ( j  < n + 1 - i ) .  
However, it is not a pure cyclic representation because of m$ = 0 ( j  > n + 1 - i ) .  In 
order to obtain a pure cyclic representation we can use the q-boson method formulated 
in [ l l ] .  We will describe the method below. 

Now we turn to the explicit examples A(2), and A(3),. 
For the case A(2), the Verma module is spanned by 

{ X ( k )  = mf,uol k c  Z + ,  m,,vn= Alvo, m2,vn= h,u,, m2,vn=0). (11) 
We prove that X ( k ) ,  ~ E Z + ,  form a basis for V(Al, A2) in the case of q" # 1. Using 
the basic commutation relations we have 

m , , X ( k )  = h q * X ( k )  
m , , X ( k ) = A d X ( k )  
m , , X ( k ) =  -q - 'q* (q -* -q*)A ,A ,X(k -  1 )  (12) 

m , , X ( k )  = X ( k + l ) .  
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Noting that X(k)  are eigenvectors of different eigenvalues A , ¶ *  of m,, in the case 
qp # 1, we get our conclusion. We can also prove that in the case qp # 1 the representa- 
tion (12) is an infinite-dimensional irreducible representation. 

If qp = 1, we get a submodule I ( p )  generated by { m:, - p I p E C } .  Then we obtain 
a p-dimensional quotient module W(h,  p )  = V ( h ) / I ( p )  with the following basis 

{ X ( k ) = X ( k )  Mod I ( h ) l O s  k s p - 1 ) .  (13) 
Then the representation induced on W(h,  p )  is the equation (12) with O s  k s p - 1  
and the following additional relations 

m , J ( p - l ) = @ ( O ) .  (14) 
This is an irreducible representation with cyclic conditions my, = p and mC2 = 0. The 
pure cyclic representation in which m e # O  will be obtained below in terms of its 
q-boson realization. 

For the case A(3), the Cartan matrix elements are not always diagonal on the 
vector X(m, n, r )  = m;;m;,m;,vo. For example, 

m,,X(m, n, r)=q"+"h,X(m, n, r)-(l-q")q"+"-"-' X ( m +  1, n+ 1, r). (15) 

So we choose a new set of vectors in V ( h J  

{ Y ( m , n ,  r )=m;" ,m~,A '~A=m, lm, , -q - 'm,2m2, ,m,  n,rEZ+}. (16) 

Then using the following induction relation 

X(m, n, r )  = A\;'AX(m, n, r-l)-A;'q-2'+1X(m+ 1, n + l ,  r-1) (17) 

we know that Y ( m ,  n, r )  is complete. We can also prove that, if qp # 1, Y(m, n, r) are 
linearly independent because they are the eigenvectors of different eigenvalues of the 
operator m,,+m,,+ m,,: 

(m,,+ m,,+ ml,) Y(m, n, r) = (hIqm+'+h2qm+" +A,¶"+')  Y ( m ,  n, r). (18) 

Therefor Y ( m ,  n, r )  from a basis for V(hJ in the case of qp # 1. 

mZ2Y(m,n,r)=q"+"h,Y(m,n,r) 
m,,Y(m,n,r )=q"+'A,Y(m,n,r )  

mI2 Y(m,  n, r )  = Y(n + 1, n, r )  

The representation on V ( h i )  is obtained as 

m,,Y(m, n, r ) =  q'+'A,Y(m, n, r) 

m,, Y(m, n, r ) =  Y(m, n +  1, r) 

m l l Y ( m ,  n, 4 
=q-("+")A;'Y(m,n, r + l )  

+ q-'"+"+"h;' Y( m + 1, n + 1, r )  

m,,Y(m, n, r) = -q'+'-'h,A2(1 -q2"')Y(m- 1, n, r )  

m12Y(m, n, r ) =  -qm-cr~lAzh, ( l  -q2")Y(m,  n - 1, r )  

ml1 y ( m ,  n, r )  

= ¶-'A ,A2,!,( 1 - q") Y( m, n, r - 1) 

+q2' -2Alh,A~(1  -q2")(1 -qZn)Y(m-l ,  n - 1, n - 1, r) 

which is an infinite-dimensional irreducible representation if qp # 1. 
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If qp = 1, we consider the quotient module W(h,,  pG), which is also generated by 
my,, mh and Ap (in (16) AP is indeed a central element!). In this case a basis for 
W(h, ,  pi) can be chosen as 

( F ( m ,  n, r )  = Y(m,  n, r )  Mod I(pi)JOS m, n, r S p  - 1) 

dim W(hj ,  pi) = p 3  
(20) 

The!! !he represen!&?!! e!! F ( A i ,  pi) is (!?) with Y(E, E, r )  rep!zred hy F(m, 2, r )  
(OS m, n, r c p -  1)  and the following relations (letting Ap = p4): 

m , 2 F ( p - l , n , r ) = I L I F ( 0 . ~ r I )  m , , F ( m , p - l ,  r ) = p 2 F ( m , 0 , r )  

m , , F ( p - l , n ,  r )  
= q-("- ' )A; 'F(p- l .  n. r + l )  

+ q-"A;'pIF(O, n + 1, r )  

m l l F ( m , p - l ,  4 
=q~"- ' lh; 'F(m,p- l ,  r + l )  

+ q-"h;'p,F(m + l , O ,  r )  

mllF(m,  n, P - 1)  

= q-"+"'A-' p4F(m, n,O)  

+ q - ( m + " + ' l A ~ ' F ( m + l , n + l , p - l )  

which is also an irreducible representation. 

A(n),. The key of the method is to construct a representation of A(n) ,  on the q-Fock 
space which is isomorphic to the Verma module. For the detailed description of the 
method, please see 1111. Here we only discuss the cases A(2), and A(3),. 

Define the q-Fock space Sq of the q-deformed Heisenberg-Weyl algebra [I21 of 
one q-boson: 

gq: i i ; . j=jb+j*/~j i ; .~~+, b j o j = ~ ,  ~ * i~ j= io j ; ,  (2ij  

The mapping 4 : V(A) + Sq defined by 4: X ( k )  ++ ik) is a linear space isomorphism. 
Then we obtain a representation r ( x )  = + p ( x ) 4 - '  of A(2), on Sq, where X E  A(2), 
and p is the Verma representation (12) of A(2),. This representation is of the form 

c'sixg :'.e -e:'.od fe-.s!ated in [!!I '.'e CI" $b!IiZ the q-besox rcPe!iza!ions ef 

r(mlz) ik)  = Aiq*i k )  

T(m,,)lk)= h2qiik) 
(22) 

frnm which we immediate!y obtain the q-boson rea!IzatIon of A(2)q 
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By making use of the cyclic representation of q-deformed Heisenberg-Weyl algebra [ 1 1 3  

b+vh = uk+l O s k G p - 2  

b up-l =& 5E c* + 

where [ X I  = ( q x  - q - x ) / ( q  - q- ' )  we obtain a pure cyclic representation ( 5  is non- 
generic) 

m,2vk =A,qk+'uk m2,uk = A2qk+'vk 

mz2uk = qk i ' - ' (q -q - ' ) [k+5]vk_ ,  1 s k G p - l  

mz2u0= - q K - ' f - ' ( s - q ' ) [ 5 1 ~ , - ,  ( 2 5 )  

mllvk=vh+l O G k G p - 2  

mllup-, = 5vo 

It is easy to verify that m:, =( and m~2="'neIb(q"+i-q-'X+''). 
Using the same method we obtain the q-boson realization of A(3), as 

mll=A2Q:Q: m,, = A IQ:  Q: m3, = .bQ:Q: 
mI2 = b: m2' = b: m,, = A;'Q;Q;(b;+ qb:b:) 

-.. = 1" - "-')I i.n+ntn,+h 
(26) 

. = I "  - " - 1 ) ~ .  I .n+n+n+ h. 
...32~~~\.I .I , " 2 " J Y I Y 2 Y 3 - 2  ... I 3  \.I .I " I " I Y ,  Y Z  Y.3 "I 

m3, = - A , A 2 A 3 q - 2 ( q  - q-')Q:b3 + A d 1 A 3 ( q  - q-1)2Q: Q: Q:2b,b2. 

Then we can immediately obtain its pure cyclic representation. 

called 2. operators: 2;X; = q-'X,Z;) 

b t o Z i  Q t o X ,  

There is a corresponding relation between the q-boson operators and the HWR (also 

b i o Z r ' ( X i  - X r ' ) / ( q  - ¶ - I ) .  

Then we can obtain the HWR realization of A(n), from its q-boson realization. It is 
obvious that A ( n ) ,  can be realized in terms of n(n-1) /2  q-boson operators or 
n(n - 1 ) / 2  HWR. This conclusion is in accord with Weyers' result. 

So iar we have generaiiy studied the Verma moduie ana its q-boson reaiization of 
the quantum matrix element algebra A(n),. However, there are some questions which 
is not clear. How do we choose a basis for V(AJ on which all the Cartan matrix 
elements are diagonal? What is the classification of the finite- and infinite-dimensional 
irreducible representations of A(n),. These open problems are under consideration. -- -__. L___ -0 .L:- I -..-- 1-1 I:,." .- .t.-..t. n P D P.... n Y E T  :.. -..A n, xxr I ' L IIC ~ U L L I U ~ S  U, LLLIS ~ C L L C L  wvuiu ~ L K G  LU I U ~ L ~  u i  b r OUA, u i  a I _nu LIIN YI v. il 
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